Uniform Convergence of a Linearly Transformed Particle Method for the Vlasov-Poisson System

نویسندگان

  • Martin Campos Pinto
  • Frédérique Charles
چکیده

A particle method with linear transformation of the particle shape functions is studied for the 1d-1v Vlasov-Poisson equation, and a priori error estimates are proven which show that the approximated densities converge in the uniform norm. When compared to standard fixedshape particle methods, the present approach can be seen as a way to gain one order in the convergence rate of the particle trajectories at the cost of linearly transforming each particle shape. It also allows to compute strongly convergent densities with particles that overlap in a bounded way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A difference scheme for the Vlasov-Poisson-Fokker-Planck system

A finite difference scheme is proposed for a relatively simple one dimensional collisional plasma model (Vlasov-Poisson-Fokker-Planck). The convergence of the scheme was established in [10]. In this article the scheme is implemented and compared with a random particle method. The difference scheme is found to be more effective, particularly at resolving the plasma density, / (£, x, v).

متن کامل

Rate of Convergence of a Particle Method to the Solution of the Mc Kean - Vlasov's Equation

This paper studies the rate of convergence of an appropriate discretization scheme of the solution of the Mc Kean Vlasov equation introduce d by Bossy and Talay. More speci cally, we consider approximations of the distribution and of the density of the solution of the stochastic di erential equation associated to the Mc Kean Vlasov equation. The scheme adopted here is a mixed one: Euler/weakly ...

متن کامل

Hyperbolic Approximation of the Fourier Transformed Vlasov Equation

We construct an hyperbolic approximation of the Vlasov equation in which the dependency on the velocity variable is removed. The model is constructed from the Vlasov equation after a Fourier transformation in the velocity variable [9]. A well-chosen nite element semi-discretization in the spectral variable leads to an hyperbolic system.The resulting model enjoys interesting conservation and sta...

متن کامل

Convergence analysis for Backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system

We construct and analyze a numerical scheme for the two-dimensional Vlasov-Poisson system based on a backward-Euler (BE) approximation in time combined with a mixed finite element method for a discretization of the Poisson equation in the spatial domain and a discontinuous Galerkin (DG) finite element approximation in the phase-space variables for the Vlasov equation. We prove the stability est...

متن کامل

A Particle Method for the Semiclassical Limit of the Schrödinger Equation and the Vlasov-Poisson Equations

When using standard deterministic particle methods, point values of the computed solutions have to be recovered from their singular particle approximations by using some smoothing procedure. The choice of the smoothing procedure is rather flexible. Moreover, there is always a parameter associated with the smoothing procedure: if this parameter is too large, the numerical solution loses its accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016